What You’ll Learn

Key Ideas

• Name polygons according to the number of sides and angles. (Lesson 10–1)
• Find measures of interior and exterior angles of polygons. (Lesson 10–2)
• Estimate and find the areas of polygons. (Lessons 10–3 to 10–5)
• Identify figures with line or rotational symmetry. (Lesson 10–6)
• Identify tessellations and create them using transformations. (Lesson 10–7)

Key Vocabulary

apothem (p. 425)
regular polygon (p. 402)
symmetry (p. 434)

Why It’s Important

Spiders Spiders use different kinds of silk for different purposes, such as constructing cocoons or egg sacs, spinning webs, and binding prey. Spider silk is about five times as strong as steel of the same weight.

Polygons are used every day in fields like architecture, art, and science. You will use a polygon to estimate the area of a spider’s web in Lesson 10–3.
Study these lessons to improve your skills.

✓ Lesson 5–2, pp. 193–197

Find the value of each variable.

1. \[\begin{align*}
\text{\angle A} &= 26^\circ \\
\text{\angle B} &= 38^\circ \\
\text{\angle C} &= x^\circ
\end{align*} \]

2. \[\begin{align*}
\text{\angle A} &= 44^\circ \\
\text{\angle B} &= x^\circ \\
\text{\angle C} &= x^\circ
\end{align*} \]

3. \[\begin{align*}
\text{\angle A} &= 53^\circ \\
\text{\angle B} &= x^\circ \\
\text{\angle C} &= x^\circ
\end{align*} \]

Lesson 1–6, pp. 35–40

Find the perimeter and area of each rectangle.

4. \[\begin{align*}
\text{Length} &= 5 \text{ in.} \\
\text{Width} &= 12 \text{ in.}
\end{align*} \]

5. \[\begin{align*}
\text{Length} &= 11 \text{ cm} \\
\text{Width} &= 4.4 \text{ cm}
\end{align*} \]

6. \[\begin{align*}
\text{Length} &= 6.5 \text{ m} \\
\text{Width} &= 6.5 \text{ m}
\end{align*} \]

Lesson 6–2, pp. 234–239

For each triangle, tell whether the red segment or line is an altitude, a perpendicular bisector, both, or neither.

7. \[\begin{align*}
\text{\angle A} &= 53^\circ \\
\text{\angle B} &= 44^\circ \\
\text{\angle C} &= x^\circ
\end{align*} \]

8. \[\begin{align*}
\text{\angle D} &= 26^\circ \\
\text{\angle E} &= x^\circ \\
\text{\angle F} &= x^\circ
\end{align*} \]

9. \[\begin{align*}
\text{\angle G} &= 38^\circ \\
\text{\angle H} &= x^\circ \\
\text{\angle I} &= x^\circ
\end{align*} \]

FOLDABLES™ Study Organizer

Make this Foldable to help you organize your Chapter 10 notes. Begin with a sheet of plain \(\frac{8}{2} \text{" by 11"} \) paper.

1. Fold the short side in fourths.

2. Draw lines along the folds and label each column Prefix, Number of Sides, Polygon Names, and Figure.

Reading and Writing Store the Foldable in a 3-ring binder. As you read and study the chapter, write definitions and examples of important terms in each column.

www.geomconcepts.com/chapter_readiness
Recall that a polygon is a closed figure in a plane formed by segments called sides. A polygon is named by the number of its sides or angles. A triangle is a polygon with three sides. The prefix tri- means three. Prefixes are also used to name other polygons.

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Number of Sides</th>
<th>Name of Polygon</th>
</tr>
</thead>
<tbody>
<tr>
<td>tri-</td>
<td>3</td>
<td>triangle</td>
</tr>
<tr>
<td>quadri-</td>
<td>4</td>
<td>quadrilateral</td>
</tr>
<tr>
<td>penta-</td>
<td>5</td>
<td>pentagon</td>
</tr>
<tr>
<td>hexa-</td>
<td>6</td>
<td>hexagon</td>
</tr>
<tr>
<td>hepta-</td>
<td>7</td>
<td>heptagon</td>
</tr>
<tr>
<td>octa-</td>
<td>8</td>
<td>octagon</td>
</tr>
<tr>
<td>nona-</td>
<td>9</td>
<td>nonagon</td>
</tr>
<tr>
<td>deca-</td>
<td>10</td>
<td>decagon</td>
</tr>
</tbody>
</table>

When you studied quadrilaterals in Lesson 8–1, you learned several terms that can be applied to all polygons.

An equilateral polygon has all sides congruent, and an equiangular polygon has all angles congruent. A regular polygon is both equilateral and equiangular.
Scientists are able to study the tops of forests from huge inflatable rafts.

A. Identify polygon ABCDEF by its sides.
The polygon has six sides. It is a hexagon.

B. Determine whether the polygon, as viewed from this angle, appears to be regular or not regular. If not regular, explain why.
The sides do not appear to be the same length, and the angles do not appear to have the same measure. The polygon is not regular.

Name two consecutive vertices of hexagon ABCDEF.
B and C are consecutive vertices since they are the endpoints of BC. Other pairs of consecutive vertices are listed below.
C, D D, E E, F F, A A, B

You can use the properties of regular polygons to find the perimeter.

Example 3 Find the perimeter of a regular octagon whose sides are 7.6 centimeters long.

\[
\text{perimeter of regular polygon} = \text{number of sides} \times \text{length of each side}
\]

\[
P = 8 \times 7.6
\]

\[
P = 60.8
\]

The perimeter is 60.8 centimeters.

Your Turn

d. Find the perimeter of a regular decagon whose sides are 12 feet long.
A polygon can also be classified as convex or concave.

convex

Example 4

Classify polygon STUVW as **convex or concave**.

When all the diagonals are drawn, no points lie outside of the polygon. So, STUVW is convex.

concave

Diagonal JL lies outside of the polygon.

Your Turn

e. Classify the polygon at the right as **convex or concave**.

Check for Understanding

Communicating Mathematics

1. **Draw** a concave quadrilateral. Explain why it is concave.

2. **Determine** whether each figure is a polygon. Write **yes** or **no**. If no, explain why not.

a.
 b.

3. **Writing Math** Find five words in the dictionary, each beginning with a different prefix listed in the table on page 402. Define each word.

Vocabulary

- regular polygon
- convex
- concave
Guided Practice

Example 1
Identify each polygon by its sides. Then determine whether it appears to be regular or not regular. If not regular, explain why.

4.

5.

Example 2
Name each part of pentagon PENTA.

6. all pairs of nonconsecutive vertices
7. any three consecutive sides

Example 3
8. Find the perimeter of a regular heptagon whose sides are 8.1 meters long.

Example 4
Classify each polygon as convex or concave.

9.

10.

11. Sewing Refer to the collar at the right.

Example 1
a. Identify polygon PQRSTUV by its sides.

Example 4
b. Classify the polygon as convex or concave.

Exercises

Practice
Identify each polygon by its sides. Then determine whether it appears to be regular or not regular. If not regular, explain why.

12.

13.

14.

Lesson 10–1 Naming Polygons 405
Identify each polygon by its sides. Then determine whether it appears to be regular or not regular. If not regular, explain why.

15. 16. 17.

Name each part of octagon $MNOPQRST$.

18. two consecutive vertices
19. two diagonals
20. all nonconsecutive sides of PQ
21. any three consecutive sides
22. any five consecutive vertices

Classify each polygon as convex or concave.

23. 24. 25.

26. 27. 28.

Find the perimeter of each regular polygon with the given side lengths.

29. pentagon, 20 in. 30. triangle, 16 km 31. nonagon, 3.8 mm

32. If the perimeter of a regular hexagon is 336 yards, what is the length of each side in yards? in feet?

33. Draw a convex pentagon. Label the vertices and name all of the diagonals.
Applications and Problem Solving

34. Baseball The following excerpt is from the official rules of baseball.

Home base is a five-sided slab of whitened rubber. It is a 17-inch square with two of the corners removed so that one edge is 17 inches long, two consecutive sides are $8\frac{1}{2}$ inches long, and the remaining two sides are 12 inches long and set at an angle to make a point.

Explain why this statement is incorrect.

35. Chemistry Organic compounds are named using the same prefixes as polygons. Study the first two compounds below. Use what you know about polygons to name the last two compounds.

- cyclopentene
- cyclohexene

36. Critical Thinking Use a straightedge to draw the following figures.
 a. convex pentagon with two perpendicular sides
 b. concave hexagon with three consecutive congruent sides

Mixed Review

37. $\triangle XYZ$ is similar to $\triangle PQR$. Determine the scale factor for $\triangle XYZ$ to $\triangle PQR$. \(\text{(Lesson 9–7)}\)

\[\begin{align*} X & \quad 12 \\ Y & \quad \text{8 in.} \\ Z & \quad \text{12 in.} \end{align*} \]

38. Find the value of n. \(\text{(Lesson 9–6)}\)

\[\begin{align*} a & \quad \text{10} \\ b & \quad \text{15} \\ c & \quad \text{8} \\ n & \quad ? \end{align*} \]

39. Determine whether $\overline{MJ} \parallel \overline{LK}$. \(\text{(Lesson 9–5)}\)

\[\begin{align*} J & \quad 12 \\ K & \quad \text{8 in.} \\ M & \quad \text{12 in.} \\ L & \quad \text{10 in.} \end{align*} \]

40. Write the ratio 2 yards to 2 feet in simplest form. \(\text{(Lesson 9–1)}\)

41. Determine whether a triangle with side lengths 10 inches, 11 inches, and 15 inches is a right triangle. \(\text{(Lesson 6–6)}\)

42. Short Response The letters at the right are written backward. What transformation did Donald use in writing his name? \(\text{(Lesson 5–3)}\)

43. Multiple Choice If y varies directly as x and $y = 10.5$ when $x = 7$, find y when $x = 12$. \(\text{(Algebra Review)}\)

\[\begin{align*} \text{A} & \quad 1.5 \\ \text{B} & \quad 8 \\ \text{C} & \quad 15.5 \\ \text{D} & \quad 18 \end{align*} \]
Recall that the sum of the measures of the angles of a triangle is 180.

The constellation of stars at the right is called the Scorpion. The stars form pentagon SCORP. SO and SR are diagonals from vertex S and they divide the pentagon into triangles.

There is an important relationship between the number of sides of a convex polygon and the number of triangles formed by drawing the diagonals from one vertex. The hands-on activity explains this relationship.

Hands-On Geometry

Materials: straightedge

Step 1 Draw a convex quadrilateral.

Step 2 Choose one vertex and draw all possible diagonals from that vertex.

Step 3 How many triangles are formed?

Step 4 Make a table like the one below.

<table>
<thead>
<tr>
<th>Convex Polygon</th>
<th>Number of Sides</th>
<th>Number of Diagonals from One Vertex</th>
<th>Number of Triangles</th>
<th>Sum of Interior Angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>quadrilateral</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2(180) = 360</td>
</tr>
<tr>
<td>pentagon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hexagon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>heptagon</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(n)-gon</td>
<td>(n)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Try These

1. Draw a pentagon, a hexagon, and a heptagon. Use the figures to complete all but the last row of the table.

2. A polygon with \(n\) sides is an \(n\)-gon. Determine the number of diagonals that can be drawn from one vertex and enter it in the table.

3. Determine the number of triangles that are formed in an \(n\)-gon by drawing the diagonals from one vertex. Enter it in the table.

4. What is the sum of the measures of the interior angles for a convex polygon with \(n\) sides? Write your answer in the table.
In the activity, you discovered that two triangles are formed in a quadrilateral when the diagonal is drawn from one vertex. So, the sum of measures of the interior angles is 2×180 or 360. You extended this pattern to other convex polygons and found the sum of interior angles of a polygon with n sides. The results are stated in the following theorem.

Theorem 10–1 If a convex polygon has n sides, then the sum of the measures of its interior angles is $(n - 2)180$.

You can use Theorem 10–1 to find the sum of the interior angles of any polygon or to find the measure of one interior angle of a regular polygon.

1. Landscapers often need to know interior angle measures of polygons in order to correctly cut wooden borders for garden beds. The border at the right is a regular hexagon. Find the sum of measures of the interior angles.

 \[
 \text{sum of measures of interior angles} = (n - 2)180 \\
 = (6 - 2)180 \\
 = 4 \cdot 180 \\
 = 720 \\
 \]

 The sum of measures of the interior angles of a hexagon is 720.

2. **Find the measure of one interior angle in the figure in Example 1.**

 All interior angles of a regular polygon have the same measure. Divide the sum of measures by the number of angles.

 \[
 \text{measure of one interior angle} = \frac{720}{6} \quad \rightarrow \text{sum of interior angle measures} \\
 = 120 \quad \rightarrow \text{number of interior angles} \\
 \]

 One interior angle of a regular hexagon has a measure of 120.

Your Turn

Refer to the regular polygon at the right.

a. Find the sum of measures of the interior angles.

b. Find the measure of one interior angle.
In Lesson 7–2, you identified exterior angles of triangles. Likewise, you can extend the sides of any convex polygon to form exterior angles. If you add the measures of the exterior angles in the hexagon at the right, you find that the sum is 360.

The figure above suggests a method for finding the sum of the measures of the exterior angles of a convex polygon. When you extend n sides of a polygon, n linear pairs of angles are formed. The sum of the angle measures in each linear pair is 180.

\[
\text{sum of measures of exterior angles} = \text{sum of measures of linear pairs} - \text{sum of measures of interior angles}
\]

\[
= n \cdot 180 - 180(n - 2)
\]

\[
= 180n - 180n + 360
\]

\[
= 360
\]

So, the sum of the exterior angle measures is 360 for any convex polygon.

Theorem 10–2 In any convex polygon, the sum of the measures of the exterior angles, one at each vertex, is 360.

You can use Theorem 10–2 to find the measure of one exterior angle of a regular polygon.

Example

Find the measure of one exterior angle of a regular heptagon.

By Theorem 10–2, the sum of the measures of the exterior angles is 360. Since all exterior angles of a regular polygon have the same measure, divide this measure by the number of exterior angles, one at each vertex.

\[
\text{measure of one exterior angle} = \frac{360}{7} \approx 51
\]

The measure of one exterior angle of a regular heptagon is about 51.

Your Turn

c. Find the measure of one exterior angle of a regular quadrilateral.
Check for Understanding

Communicating Mathematics

1. Explain how to find the interior angle measure of an \(n \)-sided regular polygon.

2. Find a counterexample to the following statement. An exterior angle measure of any convex polygon can be found by dividing 360 by the number of interior angles.

3. As part of a class assignment, Janelle was searching for polygons that are used in everyday life. She found the company logo at the right and reasoned, “Since this pentagon is divided into five triangles, the sum of the measures of the interior angles is 5(180), or 900.” Is she correct? Explain why or why not.

Guided Practice

Example 1

4. Find the sum of the measures of the interior angles of polygon \(GHIJKLM \).

Example 2

5. Find the measure of one interior angle of a regular quadrilateral.

Example 3

6. What is the measure of one exterior angle of a regular triangle?

Example 1

7. Soap Soap bubbles form tiny polygons, as shown in the photograph at the right. Find the sum of the interior angle measures of polygon \(ABCDEF \).

Exercises

Practice

Find the sum of the measures of the interior angles in each figure.

8. [Diagram of polygon]

9. [Diagram of polygon]

10. [Diagram of polygon]

Find the measure of one interior angle and one exterior angle of each regular polygon. If necessary, round to the nearest degree.

11. pentagon

12. heptagon

13. decagon
14. The sum of the measures of five exterior angles of a hexagon is 284. What is the measure of the sixth angle?

15. The measures of seven interior angles of an octagon are 142, 140, 125, 156, 133, 160, and 134. Find the measure of the eighth interior angle.

16. The measures of the exterior angles of a quadrilateral are \(x \), \(2x \), \(3x \), and \(4x \). Find \(x \) and the measure of each exterior angle of the quadrilateral.

17. The measure of an exterior angle of a regular octagon is \(x + 10 \). Find \(x \) and the measure of each exterior angle of the octagon.

 Applications and Problem Solving

18. **Algebra** Find the value of \(x \) in the figure at the right.

19. **Internet** Some Web sites of real-estate companies offer “virtual tours” of houses that are for sale.

 a. How many turns are made as you view the living room at the right?

 b. If you view the entire room, how many degrees do you turn?

 c. What is the sum of the measures of the interior angles of this room?

20. **Critical Thinking** The sum of the measures of the interior angles of a convex polygon is 1800. Find the number of sides of the polygon.

 Mixed Review

21. **Home Design** Refer to Exercise 19. Identify the polygon formed by the walls of the room. Does it appear to be regular or not regular? *(Lesson 10–1)*

22. Find the value of \(x \). *(Lesson 9–4)*

 Find the measure of each angle.
 (Lesson 7–2)

23. \(\angle A \)

24. \(\angle B \)

 Standardized Test Practice

25. **Multiple Choice** In any triangle, the point of intersection of the _____ is the same distance from all three vertices. *(Lesson 6–2)*

 - \(A \) perpendicular bisectors
 - \(B \) altitudes
 - \(C \) medians
 - \(D \) angle bisectors

www.geomconcepts.com/self_check_quiz
Any polygon and its interior are called a **polygonal region**. In Lesson 1–6, you found the areas of rectangles.

Postulate 10–1
Area Postulate
For any polygon and a given unit of measure, there is a unique number \(A \) called the measure of the area of the polygon.

Area can be used to describe, compare, and contrast polygons. The two polygons below are congruent. How do the areas of these polygons compare?

This suggests the following postulate.

Postulate 10–2
Congruent Polygons Postulate
Congruent polygons have equal areas.

The figures above are examples of **composite figures**. They are each made from a rectangle and a triangle that have been placed together. You can use what you know about the pieces to gain information about the figure made from them.

You can find the area of any polygon by dividing the original region into smaller and simpler polygonal regions, like squares, rectangles, and triangles. The area of the original polygonal region can then be found by adding the areas of the smaller polygons.

Postulate 10–3
Area Addition Postulate
The area of a given polygon equals the sum of the areas of the nonoverlapping polygons that form the given polygon.

\[
A_{\text{total}} = A_1 + A_2 + A_3
\]
You can use Postulates 10–2 and 10–3 to find the areas of various polygons.

Example 1

Find the area of the polygon at the right. Each square represents 1 square centimeter.

Since the area of each square represents 1 square centimeter, the area of each triangle represents 0.5 square centimeter.

\[A = 5(1) + 4(0.5) \]

\[A = 5 + 2 \]

\[A = 7 \]

There are 5 squares and 4 triangles.

Multiply.

Add.

The area of the region is 7 square centimeters, or 7 cm².

Your Turn

a. Find the area of the polygon at the right. Each square represents 1 square inch.

Irregular figures are not polygons, and they cannot be made from combinations of polygons. However, you can use combinations of polygons to approximate the areas of irregular figures.

Example 2

If Lake Superior were drained, the resulting land area would be twice that of the Netherlands. Estimate the area of Lake Superior if each square represents 3350 square miles.

One way to estimate the area is to count each square as one unit and each partial square as a half unit, no matter how large or small.

\[\text{number of squares} = 2(1) + 15(0.5) \]

\[= 2 + 7.5 \]

\[= 9.5 \]

Area \[\approx 9.5 \times 3350 \]

\[\approx 31,825 \]

There are 2 whole squares and 15 partial squares.

Multiply.

Add.

Each square represents 3350 square miles.

The area of Lake Superior is about 31,825 square miles.
b. Estimate the area of the polygon at the right. Each square unit represents 1 acre.

In the following activity, you will investigate the relationship between the area of a polygon drawn on dot paper and the number of dots on the figure.

Hands-On Geometry

Materials: rectangular dot paper straightedge

Materials:

Step 1 On a piece of dot paper, draw polygons that go through 3 dots, 4 dots, 5 dots, and 6 dots, having no dots in the interiors, as shown at the right.

Step 2 Copy the table below. Find the areas of the figures at the right and write your answers in the appropriate places in the table.

<table>
<thead>
<tr>
<th>Number of Dots on Figure</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area of Polygon (square units)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Try These

1. Draw polygons that go through 7, 8, 9, and 10 dots, having no dots in the interiors. Then complete the table.

2. Predict the area of a figure whose sides go through 20 dots. Verify your answer by drawing the polygon.

3. Suppose there are \(n \) dots on a figure. Choose the correct relationship that exists between the number of dots \(n \) and the area of the figure \(A \).

 a. \(A = \frac{n}{2} + 1 \)

 b. \(A = \frac{n}{2} \)

 c. \(A = \frac{n}{2} - 1 \)
1. Write in your own words the Area Addition Postulate.

2. Draw a polygon with the same area as, but not congruent to the figure at the right. Use dot paper.

3. Carla says that if the area of a polygon is doubled, the perimeter also doubles. Kevin argues that this is not always the case. Who is correct? Why? Draw some figures to support your answer.

Guided Practice

Find the area of each polygon in square units.

Example 1

4.
5.
6.

Example 2

7. Estimate the area of the polygon in square units.

8. Geography Two-thirds of all the geysers in the world are in Yellowstone National Park. Estimate the area of the park if each square represents 136 square miles. Use the map at the right.

Exercises

Find the area of each polygon in square units.

9.
10.
11.

A natural geyser
Estimate the area of each polygon in square units.

18.

19.

20.

21. Sketch two polygons that both have a perimeter of 12 units, but that have different areas.

22. Sketch a hexagon with an area of 16 square units.

23. **Spiders** It takes about an hour for a spider to weave a web, and most spiders make a new web every single day. Estimate the area of the web at the right. Each square represents 1 square inch.

24. **Home Improvement** The Nakashis are having their wooden deck stained. The company doing the work charges $13.50 per square yard for staining.
 a. Each square on the grid represents 1 square yard. Estimate the area of the deck to the nearest square yard.
 b. About how much will it cost to stain the deck?
25. **Critical Thinking** Use 3-by-3 arrays on square dot paper to draw all possible noncongruent convex pentagons. Determine the area of each pentagon.

Mixed Review

26. **Tile Making** A floor tile is to be made in the shape of a regular hexagon. What is the measure of each interior angle? (Lesson 10–2)

27. Find the perimeter of a regular hexagon whose sides are 3.5 feet long. (Lesson 10–1)

28. Find the values of \(x \) and \(y \). (Lesson 9–3)

29. If \(m\angle 1 = 3x \) and \(m\angle 2 = x - 2 \), find \(m\angle 1 \) and \(m\angle 2 \). (Lesson 3–7)

![Diagram of a regular hexagon with labeled sides](image)

30. **Multiple Choice** The top ten scores on Mr. Yunker’s science test were 98, 96, 95, 100, 93, 95, 96, 94, and 97. What is the median of this set of data? (Statistics Review)

- A 95.9
- B 95.5
- C 95.0
- D 94.9

Standardized Test Practice

Quiz 1

Lessons 10–1 through 10–3

Identify each polygon by its sides. Then classify the polygon as **convex** or **concave**. (Lesson 10–1)

1.

2.

A dodecagon is a polygon with 12 sides. Find the measure of each angle of a regular dodecagon. (Lesson 10–2)

3. one interior angle

4. one exterior angle

5. **Swimming** Mineku needs to know the area of her swimming pool so she can order a cover. Each square represents 16 square feet. What is the area? (Lesson 10–3)

![Diagram of a swimming pool](image)
Look at the rectangle below. Its area is \(bh \) square units. The diagonal divides the rectangle into two congruent triangles. The area of each triangle is half the area of the rectangle, or \(\frac{1}{2}bh \) square units. This result is true of all triangles and is formally stated in Theorem 10–3.

Find the area of each triangle.

1. \[A = \frac{1}{2}bh \quad \text{Theorem 10–3} \]
 \[= \frac{1}{2}(19)(14) \quad \text{Replace } b \text{ with 19 and } h \text{ with 14.} \]
 \[= 133 \quad \text{Simplify.} \]
 The area is 133 square centimeters.

2. \[A = \frac{1}{2}bh \quad \text{Theorem 10–3} \]
 \[= \frac{1}{2}(11 \frac{1}{2})(7) \quad \text{Replace } b \text{ with } 11 \frac{1}{2} \text{ and } h \text{ with 7.} \]
 \[= \frac{1}{2}(\frac{23}{2})(7) \quad 11 \frac{1}{2} = \frac{23}{2} \]
 \[= \frac{161}{4} \text{ or } 40 \frac{1}{4} \quad \text{Simplify.} \]
 The area is \(40 \frac{1}{4} \) square feet.

In a right triangle, a leg is also the altitude of the triangle.

Algebra Review
Operations with Fractions, p. 721
Example 3

Find the area of \(\triangle WXY \).

\[
A = \frac{1}{2}bh \quad \text{Theorem 10–3}
\]
\[
= \frac{1}{2}(8)(4.2) \quad \text{Replace } b \text{ with 8 and } h \text{ with 4.2.}
\]
\[
= 16.8 \quad \text{Simplify.}
\]

Note that \(ZY \) is not part of the triangle.

The area of \(\triangle WXY \) is 16.8 square meters.

Your Turn

Find the area of each triangle.

a.

b.

\[
\text{Area} = \frac{1}{2}bh
\]

\[
= \frac{1}{2}(6)(4.5) \quad \text{Replace } b \text{ with 6 and } h \text{ with 4.5.}
\]
\[
= 13.5 \quad \text{Simplify.}
\]

c.

\[
\text{Area} = \frac{1}{2}bh
\]

\[
= \frac{1}{2}(23)(12) \quad \text{Replace } b \text{ with 23 and } h \text{ with 12.}
\]
\[
= 138 \quad \text{Simplify.}
\]

You can find the area of a trapezoid in a similar way. The altitude of a trapezoid \(h \) is a segment perpendicular to each base.

The following activity leads you to find the area of a trapezoid.

Look Back

Trapezoids: Lesson 8–5

Hands-On Geometry

Materials:

- grid paper
- straightedge
- scissors

Step 1

Draw and label trapezoid \(ABCD \) on grid paper. The bases and altitude of the trapezoid can have any measure you choose. Draw the altitude and label it \(h \). Label the bases \(b_1 \) and \(b_2 \).

Step 2

Draw trapezoid \(FGHI \) so that it is congruent to \(ABCD \). Label the bases \(b_1, b_2, \) and \(h \).

Step 3

Cut out both trapezoids. Arrange them so that two of the congruent legs are adjacent, forming a parallelogram.

Try These

1. Find the length of the base of the parallelogram in terms of \(b_1 \) and \(b_2 \).
2. Recall that the formula for the area of a parallelogram is \(A = bh \). Find the area of your parallelogram in terms of \(b_1, b_2, \) and \(h \).
3. How does the area of one trapezoid compare to the area of the parallelogram?
4. Write the formula for the area of a trapezoid using \(b_1, b_2, \) and \(h \).

The results of this activity suggest the formula for the area of a trapezoid.

Theorem 10–4
Area of a Trapezoid

Words: If a trapezoid has an area of \(A \) square units, bases of \(b_1 \) and \(b_2 \) units, and an altitude of \(h \) units, then

\[
A = \frac{1}{2} h (b_1 + b_2).
\]

Model:

Symbols: \(A = \frac{1}{2} h (b_1 + b_2) \)

Example

Automobile Link

It costs $25.80 per square foot to replace a car window. How much would it cost to replace the window in the “microcar” at the right?

Explore You know the cost per square foot. You need to find the number of square feet of the window.

Plan The window is a trapezoid. Use Theorem 10–4 to find its area. Then multiply the number of square feet by $25.80 to find the total cost.

Solve

\[
A = \frac{1}{2} h (b_1 + b_2) \quad \text{Theorem 10–4}
\]

\[
= \frac{1}{2} (1) \left(\frac{1}{6} + \frac{2}{3} \right) \quad \text{Replace } h \text{ with } 1, \ b_1 \text{ with } \frac{1}{6}, \text{ and } b_2 \text{ with } \frac{2}{3}.
\]

\[
= \frac{1}{2} (1) \left(\frac{7}{6} + \frac{4}{6} \right) \quad \text{Rewrite as fractions with the same denominator.}
\]

\[
= \frac{1}{2} (1) \left(\frac{11}{6} \right) \text{ or } \frac{11}{12} \quad \text{Simplify.}
\]

The area of the window is \(\frac{11}{12} \) square foot. The cost to replace the window is \(\frac{11}{12} \times 25.80 \), or $23.65.

(continued on the next page)
Examine Check your answer by estimating.

\[A = \frac{1}{2}(1)(1 + 1) \quad \text{Round } b_1 \text{ to 1 and } b_2 \text{ to 1.} \]

\[= \frac{1}{2}(2) \text{ or 1} \quad \text{The area is about 1 square foot.} \]

Round $25.80 to $26. Then the total cost is 1 × $26, or about $26. This is close to $23.65, so the solution seems reasonable.

d. Find the area of the trapezoid.

Your Turn

\[
\begin{array}{c}
27 \text{ cm} \\
18 \text{ cm} \\
32 \text{ cm}
\end{array}
\]

Check for Understanding

1. Make a conjecture about how the area of a trapezoid changes if the lengths of its bases and altitude are doubled.

2. Use Theorem 10–3 to explain why the triangles below have equal areas.

3. Writing Math. The figure at the right is an isosceles trapezoid separated into four right triangles. On rectangular dot paper, draw three isosceles trapezoids. Separate them into the polygons below by drawing segments. Make each new vertex a dot on the trapezoid.
 a. 3 isosceles triangles
 b. 2 congruent trapezoids
 c. 5 polygonal regions (name the regions)

Guided Practice

```
Sample: \( \frac{1}{2}(6)(9 + 4) \quad \text{Solution: } \frac{1}{2}(6)(9 + 4) = 3(13) \text{ or 39} \)
```

4. \(\frac{1}{2}(12)(7) \)

5. \(\frac{1}{2}(26 + 20) \)

6. \(\frac{1}{2}(18)(17 + 13) \)
Find the area of each triangle or trapezoid.

7. \(\text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \) for a triangle with base 10 m and height 6 m.

8. \(\text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \) for a triangle with base 1.8 in. and height 3 in.

9. \(\text{Area} = \frac{1}{2} \times (\text{base}_1 + \text{base}_2) \times \text{height} \) for a trapezoid with bases 4 yd and 7 yd, and height 3 yd.

10. **School** The Pep Club is making felt banners for basketball games. Each banner is shaped like an isosceles triangle with a base 2\(\frac{2}{3}\) foot long and a height of 1 foot. **Example 1**
 a. How much felt is needed to make 90 banners, assuming that there is no waste?
 b. If felt costs $1.15 per square foot, how much will it cost to make the banners?

Exercises

Find the area of each triangle or trapezoid.

11. \(\text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \) for a triangle with base 8 in. and height 5 in.

12. \(\text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \) for a triangle with base 24 in. and height 21 in.

13. \(\text{Area} = \frac{1}{2} \times (\text{base}_1 + \text{base}_2) \times \text{height} \) for a trapezoid with bases 4 km and 6 km, and height 21 m.

14. \(\text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \) for a triangle with base 18 cm and height 15\(\frac{1}{3}\) cm.

15. \(\text{Area} = \frac{1}{2} \times (\text{base}_1 + \text{base}_2) \times \text{height} \) for a trapezoid with bases 18 in. and 38 in., and height 20 in.

16. \(\text{Area} = \frac{1}{2} \times (\text{base}_1 + \text{base}_2) \times \text{height} \) for a trapezoid with bases 13 mm and 24.8 mm, and height 13 mm.

17. \(\text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \) for a triangle with base 12\(\frac{1}{4}\) ft and height 9 ft.

18. \(\text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \) for a triangle with base 19.2 m and height 15 m.

19. \(\text{Area} = \frac{1}{2} \times \text{base} \times \text{height} \) for a triangle with base 4 yd and height 5 yd.

20. Find the area of a trapezoid whose altitude measures 4 inches and whose bases are 5\(\frac{1}{3}\) inches and 9 inches long.

21. If the area of the triangle is 261 square meters, find the value of \(x\).
22. **Home Heating** Whole-house fans are designed based on the interior square footage of living space in a home. Find the total area of the room at the right.

23. **Health** The Food Guide Pyramid outlines foods you should eat for a healthy diet. One face of the pyramid is a triangle displaying the food groups. Find the area used for each food group below.
 a. fats, oils, and sweets
 b. fruit
 c. bread, cereal, rice, and pasta

24. **Construction** It costs $1.59 per square yard to seal an asphalt parking area. How much will it cost to seal the parking lot surface at the right if all of the sections are 10 yards deep?

25. **Critical Thinking** Show how to separate isosceles trapezoid $RSTU$ into four congruent trapezoidal regions.

Mixed Review

26. Estimate the area of the polygon at the right in square units.
(Lesson 10–3)

27. Find the sum of the measures of the interior angles in the figure at the right.
(Lesson 10–2)

28. **Find the length of the median in each trapezoid.**
(Lesson 8–5)

29. **Standardized Test Practice** A carpenter is building a triangular display case with a vertical support piece as shown at the right. Describe three ways to guarantee that shelves AB and CD are parallel.
(Lesson 10–4)
Every regular polygon has a center, a point in the interior that is equidistant from all the vertices. A segment drawn from the center that is perpendicular to a side of the regular polygon is called an apothem (AP- a-them). In any regular polygon, all apothems are congruent.

The following activity investigates the area of a regular pentagon by using its apothem.

Hands-On Geometry Construction

Materials: compass straightedge

Step 1 Copy regular pentagon PENTA and its center, O.

Step 2 Draw the apothem from O to side AT by constructing the perpendicular bisector of AT. Label the apothem measure a. Label the measure of AT, s.

Step 3 Use a straightedge to draw OA and OT.

Step 4 What measure in ΔAOT represents the base of the triangle? What measure represents the height?

Step 5 Find the area of ΔAOT in terms of s and a.

Step 6 Draw ON, OE, and OP. What is true of the five small triangles formed?

Step 7 How do the areas of the triangles compare?

Try These

1. The area of pentagon PENTA can be found by adding the areas of the five triangles that make up the pentagonal region.

 \[A = \frac{1}{2}sa + \frac{1}{2}sa + \frac{1}{2}sa + \frac{1}{2}sa + \frac{1}{2}sa \]

 \[= \frac{1}{2}(sa + sa + sa + sa + sa) \text{ or } \frac{1}{2}(5sa) \]

 What measure does 5s represent?

2. Rewrite the formula for the area of a pentagon using P for perimeter.
The results of this activity would be the same for any regular polygon.

The game at the right has a hexagon-shaped board. Find its area.

First find the perimeter of the hexagon.

\[P = 6s \]

All sides of a regular hexagon are congruent.

\[= 6(9) \text{ or } 54 \]

Replace \(s \) with 9.

Now you can find the area.

\[A = \frac{1}{2}aP \quad \text{Theorem 10–5} \]

\[= \frac{1}{2}(7.8)(54) \text{ or } 210.6 \]

Replace \(a \) with 7.8 and \(P \) with 54.

The area of the game board is 210.6 square inches.

Your Turn

a. Each of the tiles in the game is also a regular hexagon. Find the area of one of the tiles if the sides are each 0.9 inch long and each apothem is 0.8 inch long.

Knowing how to find the area of a regular polygon is useful in finding other areas.

Example 2

Find the area of the shaded region in the regular polygon at the right.

Explore You need to find the area of the entire pentagon minus the area of the unshaded triangle.

Plan Use Theorem 10–5 to find the area of the pentagon. Then find the area of the unshaded triangle and subtract.
Solve

Area of Pentagon

\[P = 5s \]

All sides of a regular pentagon are congruent.

\[= 5(8) \text{ or } 40 \]

Replace \(s \) with 8.

\[A = \frac{1}{2}aP \]

Theorem 10–5

\[= \frac{1}{2}(5.5)(40) \]

Replace \(a \) with 5.5 and \(P \) with 40.

\[= 110 \text{ ft}^2 \]

Simplify.

Area of Triangle

\[A = \frac{1}{2}bh \]

Theorem 10–3

\[= \frac{1}{2}(8)(5.5) \]

Replace \(b \) with 8 and \(h \) with 5.5.

\[= 22 \text{ ft}^2 \]

Simplify.

To find the area of the region, subtract the areas:

\[110 - 22 = 88 \]

The area of the shaded region is 88 square feet.

Examine

The pentagon can be divided into five congruent triangles, as you discovered in the Hands-On activity. If each triangle is 22 square feet, then the area of the four shaded triangles is \(22 \times 4 \), or 88 square feet. The answer checks.

Your Turn

b. Find the area of the shaded region in the regular polygon at the right.

Significant digits represent the precision of a measurement. In the measurement 30.1 meters, there are three significant digits. If a 0 does not fall between two significant digits and is only a placeholder for locating the decimal point, it is not a significant digit. For example, the measure 73,000 has only two significant digits. In the figure above, the measures are stated with two significant digits. If all the measures were rounded to the nearest meter, then there would only be one significant digit. How would this affect the answer?

You can use the Science Tools App on a TI–83 Plus or TI–84 Plus graphing calculator to investigate calculations with significant digits.

Graphing Calculator Tutorial

See pp. 782–785.

The SIG-FIG CALCULATOR feature of the Science Tools App can be used to add, subtract, multiply, divide, or raise a number to a power and display the result using the correct number of significant digits.
Step 1 To open a Science Tools session, press APPS, select SciTools and press ENTER. Press any key to continue. Then press ENTER to select SIG-FIG CALCULATOR.

Step 2 Multiply 9.6 by 6 to find the perimeter of the hexagon. Notice that the calculator displays the number of significant digits in each number at the right.

The 6 should be entered as an exact value because this is not a measured value. Exact values do not restrict the number of significant digits in the answer. To enter an exact value, enter the value and then press Y-. Press ENTER to calculate.

Try These

Find the area of the hexagon above using significant digits.

1. How does the answer differ from the answer calculated without using significant digits?
2. What value(s) should be entered as exact values when finding the area using significant digits? Why are the value(s) exact?
3. How does rounding or using significant figures at intermediate steps of a computation affect the final result?
4. Why do you think scientists use significant digits in calculations?

Check for Understanding

Communicating Mathematics

1. Write a sentence that describes the relationship between the number of significant digits in measures of a regular polygon and the number of significant digits in the measure of its area.

2. Determine whether the following statement is true or false. Explain.
 If the lengths of the sides of a regular polygon are doubled, then its area is also doubled.

3. Describe how to locate the center of an equilateral triangle, a square, a regular pentagon, and a regular hexagon.

Guided Practice

Examples 1 & 2

4. Find the area of the regular polygon below.

5. Find the area of the shaded region in the regular polygon below.
6. **Traffic Signs** A stop sign is a regular octagon whose sides are each 10 inches long and whose apothems are each 12 inches long. Find the area of a stop sign.

Exercises

Find the area of each regular polygon.

7.

8.

9.

Find the area of the shaded region in each regular polygon.

10.

11.

12.

13. A regular nonagon has a perimeter of 45 inches and its apothems are each \(6 \frac{9}{10}\) inches long.
 a. Find the area.
 b. Round the length of an apothem to the nearest inch and find the area. How does it compare to the original area?

14. The area of a regular octagon is 392.4 square meters, and an apothem is 10.9 meters long.
 a. Find the perimeter.
 b. Find the length of one side.

15. **Architecture** Find the approximate area of Fort Jefferson in Dry Tortugas National Park, Florida, if each side is 460 feet long and an apothem is about 398 feet long.
16. **Botany** The petals in the flower form a polygon that is approximately a regular pentagon with an apothem 3.4 centimeters long.

 a. Find the approximate area of the pentagon.

 b. There are five triangles in the pentagon that are not part of the flower. Assume that they have equal areas and have a height of 1.5 centimeters. Find the total area of the triangles.

 c. What is the approximate area of the flower?

17. **Architecture** The Castel del Monte in Apulia, Italy, was built in the 13th century. The outer shape and the inner courtyard are both regular octagons.

 a. Find the total area of the castle, including the courtyard.

 b. Find the area of the courtyard if the octagon has an apothem of 14.5 feet and sides of 12 feet.

 c. What is the area of the inside of the castle, not including the courtyard?

18. **Critical Thinking** The regular polygons below all have the same perimeter. Are their areas equal? Explain.

 ![Polygons](image)

Mixed Review

19. Find the area of a triangle whose altitude measures 8 inches and whose base is $5 \frac{1}{2}$ inches long. *(Lesson 10–4)*

20. Sketch an octagon with an area of 16 square units. *(Lesson 10–3)*

Find the coordinates of the midpoint of each segment. *(Lesson 2–5)*

21. XY, with endpoints $X(4, -5)$ and $Y(-2, 1)$

22. AB, with endpoints $A(-2, 6)$ and $B(8, 3)$

Standardized Test Practice

23. **Multiple Choice** What is the solution of $45 \geq 7t + 10 \geq 3$?

 - A $-5 \leq t \leq 1$
 - B $5 \geq t \geq -1$
 - C $5 \leq t \leq -1$
 - D $-1 \geq t \leq 5$
HVAC Technician

Do you like to put things together, or to figure out why something is not working and try to fix it? Then you might enjoy working as an HVAC (heating, ventilation, and air conditioning) technician.

Besides performing maintenance on heating and cooling systems, technicians also install new systems. To find the size of an efficient heating system needed for a home, the technician must estimate the amount of heat lost through windows, walls, and other surfaces that are exposed to the outside temperatures.

Use the formula \(L = kDA \) to find the heat loss. In the formula, \(L \) is the heat loss in Btu (British thermal units) per hour, \(D \) is the difference between the outside and inside temperatures, \(A \) is the area of the surface in square feet, and \(k \) is the insulation rating of the surface.

1. Find the heat loss per hour for a 6 foot by 5 foot single-pane glass window \((k = 1.13) \) when the outside temperature is 32°F and the desired inside temperature is 68°F. Write your answer in Btus.

2. How much more heat is lost through the window in Exercise 1 than would be lost through a surface with an insulation rating of 1.0 under the same conditions?

FAST FACTS About HVAC Technicians

Working Conditions
- usually work at different sites each day
- may work outside in cold or hot weather or inside in uncomfortable conditions
- usually work a 40-hour week, but overtime is often required during peak seasons

Education
- courses in applied math, mechanical drawing, applied physics and chemistry, electronics, blueprint reading, and computer applications
- some knowledge of plumbing or electrical work is also helpful

Earnings

<table>
<thead>
<tr>
<th>Weekly Earnings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowest 10%—less than $287</td>
</tr>
<tr>
<td>Middle 50%—between $381 and $701</td>
</tr>
<tr>
<td>Top 10%—more than $887</td>
</tr>
</tbody>
</table>

Median earnings—$536 per week

Source: Occupational Outlook Handbook

Career Data For the latest information on careers in heating and air-conditioning, visit: www.geomconcepts.com
Ratios of Perimeters and Areas of Similar Polygons

Squares may be different sizes, as in the tile at the right, but since they have the same shape, they are similar polygons. Likewise, all regular pentagons are similar polygons, all regular hexagons are similar polygons, and so on.

You have learned that for similar polygons, the ratio of the perimeters equals the ratio of the measures of the corresponding sides. Does this same proportionality hold true for the ratios of the areas and the measures of the corresponding sides, or for the ratios of corresponding perimeters and areas? Let’s find out.

Investigate

1. The figure at the right is usually used to verify the Pythagorean Theorem. We can also use it to investigate relationships among side lengths, perimeters, and areas of regular polygons.

 a. Draw a right triangle. Make sure that its legs are no more than one-third the dimensions of your paper.

 b. Construct a square using the hypotenuse of the right triangle as one of its sides. Then construct squares on the two legs of the triangle. Label your drawing as shown.
c. Find and record the length of sides a, b, and c. Find and record the areas and perimeters of Squares 1, 2, and 3.

2. Use a spreadsheet or a calculator to write and compare each pair of ratios.
 a. $\frac{a}{b}$ and $\frac{\text{area of Square 1}}{\text{area of Square 2}}$
 b. $\frac{b}{c}$ and $\frac{\text{area of Square 2}}{\text{area of Square 3}}$
 c. $\frac{\text{perimeter of Square 1}}{\text{perimeter of Square 2}}$ and $\frac{\text{area of Square 1}}{\text{area of Square 2}}$
 d. $\frac{\text{perimeter of Square 2}}{\text{perimeter of Square 3}}$ and $\frac{\text{area of Square 2}}{\text{area of Square 3}}$

3. Use your results from Exercise 2 to solve each problem.
 a. The ratio of side lengths of two squares is $\frac{5}{4}$ or 5:4. What is the ratio of their corresponding areas? Explain how you know.
 b. The ratio of areas of two squares is $\frac{16}{30}$ or 16:30. What is the ratio of their corresponding perimeters? Explain.

Extending the Investigation

In this extension, you will determine whether there are relationships between ratios of perimeters and areas of other regular polygons.

- Use paper and construction tools or geometry drawing software to construct the following polygons on the sides of a right triangle.
 a. equilateral triangles
 b. regular pentagons
 c. regular hexagons

- Investigate the relationship between the ratios of side lengths of the right triangles and the ratios of areas of the corresponding polygons.

- For each set of polygons that you drew, investigate the ratios between areas and perimeters of corresponding polygons.

Presenting Your Conclusions

Here are some ideas to help you present your conclusions to the class.

- Make a booklet presenting your findings in this investigation.
- Research Pythagoras. Write a report about his mathematical achievements. Be sure to include at least two other ideas for which he is given credit.
Snowflakes have puzzled scientists for decades. A curious fact is that all the branches of a snowflake grow at the same time in all six directions, preserving the symmetry. You can draw a line down the middle of any snowflake, and each half will be a mirror image of the other half. When this happens, a figure is said to have line symmetry, and the line is called a line of symmetry.

One way to determine whether a figure has line symmetry is to fold it in half along a line. If the two sides match exactly when the figure is folded, then the figure has line symmetry.

Example 1
Find all lines of symmetry for rhombus $ABCD$.

Fold along possible lines of symmetry to see if the sides match.

\overline{AC} is a line of symmetry.

\overline{BD} is a line of symmetry.

not a line of symmetry

not a line of symmetry

Rhombus $ABCD$ has two lines of symmetry, \overline{AC} and \overline{BD}.
Your Turn

a. Draw all lines of symmetry for rectangle RECT.

Refer to the first figure below. You can turn this figure 90°, 180°, or 270° about point C and get the exact same figure. Figures can be turned clockwise or counterclockwise.

Any figure that can be turned or rotated less than 360° about a fixed point so that the figure looks exactly as it does in its original position is said to have rotational or turn symmetry.

b. Which of the figures below have rotational symmetry?

The first figure can be turned 120° and 240° about C and still look like the original. The second figure can be turned 180° about D and still look like the original. The third figure must be rotated 360° about E before it looks like the original. Therefore, the first and second figures have rotational symmetry, but the last figure does not.

Your Turn

Determine whether each figure has rotational symmetry. Write yes or no.

b. c.
Check for Understanding

Communicating Mathematics

1. Draw a square with 8-inch sides on a sheet of notebook paper. Cut out the figure. How many different ways can you fold the square so that the fold line is a line of symmetry?

2. Draw a polygon that has line symmetry but not rotational symmetry. Then describe how you could change the figure so that it has rotational symmetry.

3. Writing Math. Draw a polygon that has exactly three lines of symmetry. Draw the lines of symmetry.

Guided Practice

Getting Ready

Is each letter symmetric? Write yes or no.

Sample 1: A Solution 1: A Yes; the left and right halves are congruent, so the letter is symmetric.

Sample 2: J Solution 2: J No; the left and right halves are not congruent, and the top and bottom halves are not congruent. The letter is not symmetric.

Example 1

Determine whether each figure has line symmetry. If it does, copy the figure, and draw all lines of symmetry. If not, write no.

8. 9.

Example 2

Determine whether each figure has rotational symmetry. Write yes or no.

10. 11.
12. **Biology** In Central America, some starfish have as many as 50 arms. Does the top starfish at the right have line symmetry, rotational symmetry, neither, or both?

Exercises

Practice

Determine whether each figure has line symmetry. If it does, copy the figure, and draw all lines of symmetry. If not, write *no*.

Determine whether each figure has rotational symmetry. Write *yes* or *no*.

25. What kinds of triangles have line symmetry?
26. How many lines of symmetry does a regular hexagon have?

Applications and Problem Solving

27. **Advertising** All of the bank logos below have rotational symmetry. If you turn each logo a total of 360° about a fixed center, how many times does the rotated figure match the original? (*Hint:* Do not count the original figure at 360°.)

![Logos](image)

28. **Entertainment** The design at the right was generated by a toy that produces symmetric designs. Does the design have line symmetry, rotational symmetry, neither, or both?

![Design](image)

29. **Critical Thinking** The figure at the right is the *Rainbow Star Mandala* from a Chinese temple. Suppose the dark blue shapes that are formed by the white lines inside the circle are cut out and placed in a pile. If you draw one piece at random, what is the probability that you have drawn a quadrilateral? (*Hint:* Use lines of symmetry and rotational symmetry to simplify the problem.)

![Mandala](image)

Mixed Review

Find the area of each polygon. (*Lessons 10–4 and 10–5*)

30. 31. 32.
33. Determine if the pair of polygons is similar. Justify your answer.
(Lesson 9–2)

34. Short Response Which kind of quadrilateral is indicated by the following statement? The diagonals are congruent, perpendicular, and bisect each other.
(Lesson 8–5)

35. Multiple Choice Find the missing measure in the figure at the right.
(Lesson 8–1)

\[\begin{array}{c} \begin{array}{c} 98^\circ \\ 82^\circ \end{array} \quad x^\circ \quad \begin{array}{c} 98^\circ \\ 81^\circ \end{array} \end{array} \]

Quiz 2 Lessons 10–4 through 10–6

Find the area of each triangle or trapezoid.
(Lesson 10–4)

1. \[\text{Area} = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times 6 \text{ cm} \times 11.4 \text{ cm} \]

2. \[\text{Area} = \frac{1}{2} \times (\text{base} + \text{top base}) \times \text{height} = \frac{1}{2} \times (3 \text{ ft} + 3 \text{ ft}) \times 5 \frac{1}{2} \text{ ft} \]

3. \[\text{Area} = \frac{1}{2} \times (\text{base} + \text{top base}) \times \text{height} = \frac{1}{2} \times (52 \text{ km} + 34.7 \text{ km}) \times 40.2 \text{ km} \]

4. \[\text{Area} = \frac{1}{2} \times \text{base} \times \text{height} = \frac{1}{2} \times 15 \frac{1}{4} \text{ in.} \times 26 \text{ in.} \]

Find the area of each regular polygon.
(Lesson 10–5)

5. \[\text{Area} = \frac{1}{2} \times \text{perimeter} \times \text{apothem} = \frac{1}{2} \times 13 \text{ yd} \times 11 \text{ yd} \]

6. \[\text{Area} = \frac{1}{2} \times \text{perimeter} \times \text{apothem} = \frac{1}{2} \times 2 \text{ m} \times 2 \text{ m} \]

7. \[\text{Area} = \frac{1}{2} \times \text{perimeter} \times \text{apothem} = \frac{1}{2} \times 16.8 \text{ cm} \times 16.2 \text{ cm} \]

8. \[\text{Area} = \frac{1}{2} \times \text{perimeter} \times \text{apothem} = \frac{1}{2} \times 8 \frac{1}{4} \text{ in.} \times 7 \text{ in.} \]

9. Sports Refer to the soccer field at the right.
(Lesson 10–6)

a. Does the field have line symmetry? If so, how many lines of symmetry could be drawn?

b. Does the field have rotational symmetry?

10. Draw a figure that has rotational symmetry when it is turned 180° only.
(Lesson 10–6)
The hexagon-tiled “floor” at the right formed about 100,000 years ago from molten lava.

Tiled patterns created by repeating figures to fill a plane without gaps or overlaps are called **tessellations**. Tessellations can be formed by translating, reflecting, or rotating polygons. When only one type of regular polygon is used to form a pattern, the pattern is called a **regular tessellation**. If two or more regular polygons are used in the same order at every vertex, it is called a **semi-regular tessellation**.

Identify the figures used to create each tessellation. Then identify the tessellation as regular, semi-regular, or neither.

1. Only equilateral triangles are used. The tessellation is regular.
2. Squares and regular octagons are used in the same order at every vertex. The tessellation is semi-regular.

Examples

What types of transformations can be used to create these tessellations?

Your Turn

a.

b.
You can create tessellations easily using dot paper.

Example 3

Use isometric dot paper to create a tessellation using regular hexagons and triangles.

Here is one way to create the tessellation.

1. Draw a hexagon.
2. Add triangles so that there is no space between the polygons.
3. Draw another hexagon and more triangles. Continue the pattern.

Your Turn

c. Use dot paper to create a tessellation using rhombi.

Check for Understanding

1. **Find** examples of tessellations in nature, in magazines, or on the Internet.

 a. Tell whether the tessellations are *regular*, *semi-regular*, or *neither*.

 b. Explain which transformations can be used to create the tessellations.

2. **Predict** the sum of the measures of the angles that meet at a common vertex in a tessellation, such as the tile pattern shown at the right. Explain how you made your prediction.

3. **Explain** why it is less expensive to make hexagonal pencils than round pencils.
4. Identify the polygons used to create the tessellation at the right. Then identify the tessellation as *regular*, *semi-regular*, or *neither*.

5. Use rectangular dot paper to create a tessellation using two different-sized squares.

6. **Biology** Hard plates called *scutes* (scoots) cover the shell of a turtle. Each species has its own scute pattern, which gets larger as the turtle grows. Identify the polygons found in the tessellation on this turtle’s shell.

7. Identify the figures used to create each tessellation. Then identify the tessellation as *regular*, *semi-regular*, or *neither*.

8.

9.

10.
Use dot paper to create a tessellation using the given polygons.

11. trapezoids
12. large and small equilateral triangles
13. octagons and equilateral triangles
14. Refer to Exercise 4. Create a different tessellation using the same polygons.

15. Describe the tessellation used in the quilt block as regular, semi-regular, or neither.

16. Construction The stones or bricks in a patio are laid so that there is no space between them. One example is shown at the right.
 a. Design two different brick or stone tiling patterns that could be used in a patio.
 b. Describe the transformation or transformations you used to make the pattern.

17. Design In the image below, the artist used arrows to create a tessellation. Use symbols, letters, or numbers to design your own tessellation.

18. Art The art below is Moorish.
 a. Describe the polygons in the art and explain how transformations can be used to make the design.
 b. Discuss the different types of symmetry in the design.

19. Technology The graphic shows where people believed they would get most of their news by the year 2000. The survey included only people born since the 1971 invention of the computer chip.
 a. Use tracing paper and choose one, two, or three of the polygons in the graph to create a tessellation.
 b. Discuss the use of convex and concave polygons in your tessellation.
20. **Critical Thinking**
 a. Copy and complete the table to show the measure of a vertex angle for each regular polygon listed.

<table>
<thead>
<tr>
<th>Number of Sides</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertex Angle Measure</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 b. In a rotation, how many degrees are in a full turn?
 c. What is the sum of the measures of the angles that meet at a vertex of a tessellation?
 d. Which angle measures in the table are factors of 360?
 e. Which regular polygons have those vertex angle measures?
 f. Write a conclusion based on your discoveries.

Mixed Review

21. Draw a regular octagon like the one shown. *(Lesson 10–6)*
 a. Draw all lines of symmetry.
 b. Does the octagon have rotational symmetry? If so, draw the fixed point about which the octagon rotates.

22. **Painting** Mrs. Davis is preparing to paint her house. If a gallon of paint covers 450 square feet, how many gallons of paint does she need to cover the side of the house shown at the right? *(Lesson 10–3)*

 Determine whether each quadrilateral is a parallelogram. Write yes or no. If yes, give a reason for your answer. *(Lesson 8–3)*

23. 24.

25. **Short Response** If the sides of \(\triangle CWO \) have measures of \(6y - 3 \), \(2y + 17 \), and 70, write an inequality to represent the possible range of values for \(y \). *(Lesson 7–4)*

26. **Multiple Choice** Find the value of \(x \) in the isosceles triangle shown at the right. *(Lesson 5–2)*

 - A 18
 - B 22
 - C 23.1
 - D 28.7
Graphic Artist

If you enjoy drawing, or creating art on a computer, you may be interested in a career as a graphic artist. Graphic artists use a variety of print, electronic, and film media to create art that meets a client’s needs. An artist may create a design or a logo by making a tessellation. The following steps show how to create a tessellation using a rotation.

Step 1 Draw an equilateral triangle. Then draw another triangle inside the right side of the triangle as shown below.

![Triangle](image1)

Step 2 Rotate the small triangle to the left side as shown below.

![Rotated Triangle](image2)

Step 3 Rotate the entire figure to create a tessellation of equilateral triangles. Use alternating colors to best show the tessellation.

![Tessellation](image3)

Make a tessellation for each translation shown.

1. ![Translation](image4)

2. ![Translation](image5)

FAST FACTS About Graphic Artists

Working Conditions
- work in art and design studios located in office buildings or in their own studios
- odors from glues, paint, ink, or other materials may be present
- generally work a standard 40-hour week, with some overtime

Education
- bachelor’s degree or other post-secondary training in art or design
- appropriate talent and skill, displayed in an artist’s portfolio

Employment

Where Graphic Artists Work

<table>
<thead>
<tr>
<th>Employed by Ad Agencies, Design and Commercial Art Firms, Printing and Publishing Firms</th>
<th>Self-Employed, 60%</th>
</tr>
</thead>
</table>

Career Data For the latest information on careers in graphic arts, visit: www.geomconcepts.com
Understanding and Using the Vocabulary

After completing this chapter, you should be able to define each term, property, or phrase and give an example or two of each.

- altitude (p. 420)
- apothem (p. 425)
- center (p. 425)
- composite figure (p. 413)
- concave (p. 404)
- convex (p. 404)
- irregular figure (p. 414)
- line of symmetry (p. 434)
- line symmetry (p. 434)
- polygonal region (p. 413)
- regular polygon (p. 402)
- regular tessellation (p. 440)
- rotational symmetry (p. 435)
- semi-regular tessellation (p. 440)
- significant digits (p. 428)
- symmetry (p. 434)
- tessellation (p. 440)
- turn symmetry (p. 435)

Choose the term or terms from the list above that best complete each statement.

1. If all the diagonals of a polygon lie in its interior, then the polygon is __?____.
2. A(n) __?____ is both equilateral and equiangular.
3. A segment perpendicular to the lines containing the bases of a trapezoid is a(n) __?____.
4. A segment drawn from the center perpendicular to a side of a regular polygon is a(n) __?____.
5. A pattern formed by repeating figures to fill a plane without gaps or overlaps is a(n) __?____.
6. Any polygon and its interior are called a(n) __?____.
7. A figure has __?____ when a line drawn through the figure makes each half a mirror image of the other.
8. The __?____ of a regular polygon is a point in the interior equidistant from all the vertices.
9. In a(n) __?____, only one kind of regular polygon is used to form the pattern.
10. A figure that can be turned less than 360° about a fixed point and look exactly as it does in its original position has __?____.

Skills and Concepts

Objectives and Examples

- **Lesson 10–1** Name polygons according to the number of sides and angles.

 Identify polygon PQRST and determine whether it appears to be regular or not regular.

 Polygon PQRST has five sides, so it is a pentagon. It appears to be regular.

Review Exercises

Identify each polygon by its sides. Then determine whether it appears to be regular or not regular.

11. 12.

Classify each polygon as convex or concave.

Objectives and Examples

- **Lesson 10–2** Find measures of interior and exterior angles of polygons.

 sum of measures of interior angles = \((n - 2)180\)

 \[= 8 \cdot 180 \text{ or } 1440\]

 measure of one interior angle = \(\frac{1440}{10} \text{ or } 144\)

- **Lesson 10–3** Estimate the areas of polygons.

 Find the area of the polygon.

 \[A \approx 4(1) + 3(0.5)\]

 \[\approx 5.5 \text{ square units}\]

- **Lesson 10–4** Find the areas of triangles and trapezoids.

 Area of a Triangle

 \[A = \frac{1}{2}bh\]

 Area of a Trapezoid

 \[A = \frac{1}{2}h(b_1 + b_2)\]

- **Lesson 10–5** Find the areas of regular polygons.

 Find the area of the regular polygon.

 \[A = \frac{1}{2}aP \quad \text{Area formula}\]

 \[A = \frac{1}{2}(12)(70) \quad P = 7(10) \text{ or } 70 \text{ m}\]

 \[A = 420 \text{ square meters}\]

Review Exercises

Find the sum of the measures of the interior angles in each figure.

15. \[
\text{[Image of a polygon]}
\]

16. \[
\text{[Image of a polygon]}
\]

Find the measure of one interior angle and one exterior angle of each regular polygon.

17. octagon

18. nonagon

Find the area of each triangle or trapezoid.

21. \[
\text{[Image of a triangle]}
\]

22. \[
\text{[Image of a trapezoid]}
\]

23. \[
\text{[Image of a triangle]}
\]

24. \[
\text{[Image of a trapezoid]}
\]

Find the area of each regular polygon.

25. \[
\text{[Image of a regular polygon]}
\]

26. \[
\text{[Image of a regular polygon]}
\]
Objectives and Examples

• **Lesson 10–6** Identify figures with line symmetry and rotational symmetry.

Find all of the lines of symmetry for triangle JKL.

Triangle JKL has three lines of symmetry.

• **Lesson 10–7** Identify tessellations and create them by using transformations.

Identify the figures used to create the tessellation. Then identify the tessellation as regular, semi-regular, or neither.

Regular hexagons and equilateral triangles are used to create the tessellation. It is semi-regular.

Review Exercises

Determine whether each figure has *line symmetry, rotational symmetry, both,* or *neither*.

<table>
<thead>
<tr>
<th>27.</th>
<th>28.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>29.</th>
<th>30.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

31. Identify the figures used to create the tessellation. Then identify the tessellation as regular, semi-regular, or neither.

![Tessellation](image5.png)

Use isometric or rectangular dot paper to create a tessellation using the given polygons.

32. isosceles triangles and pentagons

33. small and large squares and rectangles

Applications and Problem Solving

34. **Woodworking** A craftsman is making a wooden frame to replace the one on an octagonal antique mirror. Determine the measure of each interior angle of the frame if its shape is a regular octagon. *(Lesson 10–2)*

![Woodworking](image6.png)

35. **Construction** The Deck Builders company has several designs for decks. Find the area of the deck at the right. *(Lesson 10–4)*

![Construction](image7.png)

36. **Architecture** The plans for a new high-rise office tower show that the shape of the building will be a regular hexagon with each side measuring 350 feet. Find the area of a floor if each apothem is 303 feet long. *(Lesson 10–5)*

![Architecture](image8.png)
1. **Describe** how a polygon is named.

2. **Compare and contrast** convex and concave polygons.

Identify each polygon by its sides. Then determine if it appears to be **regular** or **not regular**. If not regular, explain why.

3.

4.

Find the measure of one interior angle and one exterior angle of each regular polygon.

5. octagon

6. pentagon

7. nonagon

8. Find the area of the polygon in square units.

9. Estimate the area of the polygon in square units.

Find the area of each triangle or trapezoid.

10.

11.

12.

Find the area of each regular polygon.

13.

14.

15.

16. Copy the figure and draw any lines of symmetry.

17. Determine whether the figure has rotational symmetry.

18. **Define** tessellation. Describe one example of a tessellation in your school.

19. **Flooring** Ms. Lopez would like to have the wood floor in her kitchen refinished. An outline of the area is shown at the right. What is the area to be refinished?

20. **Maintenance** The base of a fountain at a shopping mall is in the shape of a regular hexagon, with each side 12 feet long and each apothem 10 feet long. The base of the fountain is to be repainted. What is the area of the base of the fountain?
Example 1

Triangle PQR is isosceles, and side PQ is congruent to side QR. The measure of $\angle QRS$ is 110. What is the measure of $\angle PQR$?

- A) 40
- B) 55
- C) 70
- D) 110

Solution
Start with the given information:

$$m\angle QRS = 110$$

$\angle QRS$ and $\angle PRQ$ are a linear pair, so they are supplementary.

$$m\angle PRQ + 110 = 180$$

So, $m\angle PRQ = 70$.

$\triangle PQR$ is isosceles with $PQ \cong QR$. Therefore, the two angles opposite these sides are congruent.

$$m\angle PRQ = m\angle RPQ = 70$$

Since the sum of the measures of the interior angles of a triangle is 180, $m\angle PQR + 70 + 70 = 180$. So, $m\angle PQR = 40$. The answer is A.

Example 2

Which statement must be true about $x + y$?

- A) The sum is less than 90.
- B) The sum is exactly 90.
- C) The sum is greater than 90.
- D) No relationship can be determined.

Solution
A right angle is marked on the figure; the degree measure of this angle is 90. The angle with degree measure x is one of a pair of vertical angles, and vertical angles have the same measure. The angle with degree measure y is also one of a pair of vertical angles. So the angles of the triangle measure 90, x, and y.

The sum of the measures of all angles in a triangle is 180. So $90 + x + y = 180$. So, $x + y = 90$, and the answer is B.
After you work each problem, record your answer on the answer sheet provided or on a sheet of paper.

Multiple Choice

1. Karen is making a larger sail for her model boat. Use the diagram to find the length of the base of the new sail. *(Lesson 9–4)*
 - A 6.5 in.
 - B 6 in.
 - C 8 in.
 - D 9.5 in.

2. The cost of a taxi is $3 plus $0.75 for each mile traveled. If a taxi fare is $7.50, which equation could be used to find \(m \), the number of miles traveled? *(Algebra Review)*
 - A \((3 + 0.75)m = 7.50 \)
 - B \(3 + 75m = 7.50 \)
 - C \(3 + 0.75m = 7.50 \)
 - D \(7.50 + 3 = 0.75m \)

3. \(A B C D \) is a parallelogram. What must be the coordinates of point \(C \)? *(Lesson 8–2)*
 - A \((x, y) \)
 - B \((d + a, y) \)
 - C \((d - a, b) \)
 - D \((d + x, b) \)
 - E \((d + a, b) \)

4. Terry is making fertilizer for his garden. The directions call for 4 tablespoons in 1 gallon of water. Terry accidentally puts 5 tablespoons of fertilizer in the watering can. How many gallons of water should he use to keep the correct proportion of fertilizer to water? *(Algebra Review)*
 - A 0.8
 - B 1
 - C 1.25
 - D 2

5. Solve \(2(n + 5) - 6 = 3n + 9 \). *(Algebra Review)*
 - A 10
 - B -5
 - C 13
 - D no solution

6. A weather forecaster states that the probability of rain today is 40%. What are the odds that it will not rain today? *(Statistics Review)*
 - A 5:3
 - B 2:3
 - C 2:5
 - D 3:2

7. Water flows through a hose at a rate of 5 gallons per minute. How many hours will it take to fill a 2400-gallon tank? *(Algebra Review)*
 - A 3
 - B 5.5
 - C 7.5
 - D 8

8. Which expression is not equivalent to the others? *(Algebra Review)*
 - A \((x + 1)^2 - x^2 \)
 - B \((x + 1 + x)(x + 1 - x) \)
 - C \(2x + 1 \)
 - D \((x - 1)^2 + x^2 \)

Grid In

9. The measure of the base of a triangle is 13 and the other two sides are congruent. If the measures are integers, find the measure of the shortest possible side. *(Lesson 7–4)*

Extended Response

10. A Little League team of 24 children, along with 7 adults, is attending a minor league baseball game. The team raised $210, and the adults paid $100 to cover their expenses. *(Algebra Review)*

 Part A There are 3 seats in the first row, 5 seats in the second row, 7 seats in the third row, and 9 seats in the fourth row. If this pattern continues, which row can they all sit in nearest the field? Show your work.

 Part B The tickets cost $4 for children and $6 for adults. The adults all order hot dogs at $1.75 each and drinks at $2.25 each. Write an equation to find \(S \), the amount of money left to spend.